In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice
نویسندگان
چکیده
OBJECTIVES Gold nanoparticles (AuNPs) of 21 nm have been previously well characterized in vitro for their capacity to target macrophages via active uptake. However, the short-term impact of such AuNPs on physiological systems, in particular resident macrophages located in fat tissue in vivo, is largely unknown. This project investigated the distribution, organ toxicity and changes in inflammatory cytokines within the adipose tissue after mice were exposed to AuNPs. METHODS Male C57BL/6 mice were injected intraperitoneally (IP) with a single dose of AuNPs (7.85 μg AuNPs/g). Body weight and energy intake were recorded daily. Tissues were collected at 1 h, 24 h and 72 h post-injection to test for organ toxicity. AuNP distribution was examined using electron microscopy. Proinflammatory cytokine expression and macrophage number within the abdominal fat pad were determined using real-time PCR. RESULTS At 72 hours post AuNP injection, daily energy intake and body weight were found to be similar between Control and AuNP treated mice. However, fat mass was significantly smaller in AuNP-treated mice. Following IP injection, AuNPs rapidly accumulated within the abdominal fat tissue and some were seen in the liver. A reduction in TNFα and IL-6 mRNA levels in the fat were observed from 1 h to 72 h post AuNP injection, with no observable changes in macrophage number. There was no detectable toxicity to vital organs (liver and kidney). CONCLUSION Our 21 nm spherical AuNPs caused no measurable organ or cell toxicity in mice, but were correlated with significant fat loss and inhibition of inflammatory effects. With the growing incidence of obesity and obesity-related diseases, our findings offer a new avenue for the potential development of gold nanoparticles as a therapeutic agent in the treatment of such disorders.
منابع مشابه
Effects of intraperitoneal injection of gold nanoparticles in male mice
Objective(s): There is a rising use of gold nanoparticles (AuNPs) in goods and in the medical fields but there is concern about the toxicity of them. So in this study spherical AuNPs with 3 different concentrations were applied for investigating their effects in vivo. Materials and Methods: 40 male albino mice were randomly divided into sham, control, 25 ppm, 50 ppm, 100 ppm groups and were...
متن کاملبررسی تأثیر آنتی باکتریایی نانوذرات طلا بر روی اشرشیاکلای و کلبسیلا پنومونیه مقاوم به چندین آنتی بیوتیک و تأثیر آن بر روی کبد موشهای Balb/C
Introduction: The gold nanoparticles as other nanoparticles have catalytic, magnetic, optical, and biological (antimicrobial) properties. On the other hand, resistance to antibiotics is one of the greatest public health problems posed in the world. Therefore, the present study aimed to investigate the antibacterial effects of gold nanoparticles on multi-drug resistant klebsiella pneumoniae as w...
متن کاملAn investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice
Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...
متن کاملMegavoltage X-ray Dose Enhancement with Gold Nanoparticles in Tumor Bearing Mice
One of the applications of gold nanoparticles (GNPs) in medicine is radiation dose-enhancing effect. Although there are many simulations, in vitro and in vivo evidence that GNPs can enhance significantly the radiation dose effect of orthovoltage beams. These beams compared with megavoltage (MV) beams, have limited applications in radiotherapy. In order to evaluate GNPs radiosensitization perfor...
متن کاملSonodynamic Therapy Using Protoporphyrin IX Conjugated to Gold Nanoparticles: An In Vivo Study on a Colon Tumor Model
Objective(s) Sonodynamic therapy is a physical treatment which utilizes ultrasound waves with an appropriate sensitizer such as protoporphyrin IX (PpIX). The activation of sensitizer depends on cavitation, and therefore, high intensity ultrasound is an important necessity. Beside, high intensity ultrasound can induce side effects on the healthy tissues which have surrounded tumor. The particle...
متن کامل